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Abstract

Background: Male members of primate species that form multi-male groups typically invest considerable effort
into attaining and maintaining high dominance rank. Aggressive behaviors are frequently employed to acquire and
maintain dominance status, and testosterone has been considered the quintessential physiological moderator of
such behaviors. Testosterone can alter both neurological and musculoskeletal functions that may potentiate pre-
existing patterns of aggression. However, elevated testosterone levels impose several costs, including increased
metabolic rates and immunosuppression. Cortisol also limits immune and reproductive functions.

Methods: To improve understanding of the relationships between dominance rank, hormones and infection status
in nonhuman primates, we collected and analyzed 67 fecal samples from 22 wild adult male chimpanzees (Pan
troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. Samples were analyzed for cortisol and
testosterone levels as well as intestinal parasite prevalence and richness. 1,700 hours of observation data were used
to determine dominance rank of each animal. We hypothesized that dominance rank would be directly associated
with fecal testosterone and cortisol levels and intestinal parasite burden.

Results: Fecal testosterone (but not cortisol) levels were directly associated with dominance rank, and both
testosterone and cortisol were directly associated with intestinal parasite richness (number of unique species
recovered). Dominance rank was directly associated with helminth (but not protozoan) parasite richness, so that
high ranking animals had higher testosterone levels and greater helminth burden.

Conclusions: One preliminary interpretation is that the antagonist pleiotropic effects of androgens and
glucocorticoids place a cost on attaining and maintaining high dominance rank in this species. Because of the
costs associated with elevated steroid levels, dominance status may be an honest signal of survivorship against
helminth parasites.

Background
Lifetime reproductive success for males is usually
constrained by access to fecund females (i.e., fertiliza-
tions). Male-male contest competition for mating oppor-
tunities is common in mammals, and in those species
that typically form multi-male groups, one outcome of
this competition is the formation of dominance hierar-
chies. Male dominance hierarchies occur in many pri-
mate species, and males typically invest considerable
effort into attaining and maintaining high dominance
rank. Monopolization of fecund females by high ranking
males and/or exclusion of rivals via aggression, alliance

formation or other means at times when females are
most likely to conceive would be advantageous if it
leads to increased reproductive success. Genetic analyses
now support the argument that high dominance rank
can yield reproductive payoffs in several nonhuman
primate species [1-6].
Chimpanzees (Pan troglodytes) live in multi-male,

multi-female communities. Males are philopatric; social
bonds between them are strong, and they cooperate
with each other in various ways within communities and
also cooperate in aggression between communities.
However, males also compete for mating opportunities
and form dominance hierarchies, and most males invest
considerable effort into striving for high rank [7].
Because chimpanzees have a fission-fusion social system
and individuals can go for long periods without
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encountering each other, males face an additional need
to assert themselves frequently towards subordinates
when they are together to maintain dominance over
them. Genetic data from several chimpanzee study sites
indicate that alpha males and others who attain high
rank generally achieve disproportionately high reproduc-
tive success, although reproductive skew is only moder-
ate in communities with more than a few adult males
[8,9].
Male dominance status is not a simple function of

aggressiveness, but acquisition and maintenance of high
dominance rank often involves frequent aggression, and
testosterone has been considered the quintessential phy-
siological moderator of such behavior. Testosterone can
alter both neurological and musculoskeletal functions
that may potentiate pre-existing patterns of aggression.
As an anabolic steroid, testosterone increases basal
metabolic rates and stimulates muscle anabolism, adi-
pose catabolism and redistribution [10-12]. Testosterone
increases metabolic rates in muscle cells in vitro [13],
which would be useful during competitive interactions.
Testosterone reduces the refractory period between
action potentials throughout the stria terminalis (con-
necting the hypothalamus with the amygdala), which
can potentiate an aggressive response [14]. Testosterone
also influences the organization of typical masculinized
morphological and behavioral characteristics beginning
in utero [15,16].
Direct associations between testosterone, rates of

aggression, and dominance rank have been identified in
several species, including nonhuman primates [17,18].
Conversely, several studies have failed to demonstrate
significant correlations between aggression, dominance
rank and testosterone levels [19,20]. In fact, there is sur-
prisingly little evidence that short-term changes in tes-
tosterone levels correlate with increased levels of
aggression, and fluctuations in testosterone levels in
healthy, eugonadal individuals over time do not necessa-
rily predict changes in levels of aggression within indivi-
duals, human or nonhuman [reviewed in [21] and [22]].
Rather, testosterone may have a permissive effect,
potentiating pre-existing patterns of aggression [23].
Testosterone is also more frequently associated with
aggression and dominance rank during situations of
social instability, such as during challenges by conspeci-
fic males for territory or access to mates, the establish-
ment of territorial boundaries, the formation of
dominance relationships, or in the presence of receptive
females [24].
Testosterone may facilitate attainment of high rank,

and thus increase reproductive success, by modifying
behaviors (e.g., aggression, mate seeking, courtship,
mate guarding) and physical attributes (i.e., secondary
sexual characteristics and muscle anabolism). However,

there are a number of costs imposed by elevated testos-
terone levels. These include increased metabolic rates
[25,26], increased risk of prostate cancer [27], produc-
tion of oxygen radicals [28], and immunosuppression
[reviewed in [29]], all of which could compromise
survivorship.
Testosterone, along with many other hormones, func-

tions as a biochemical link between various somatic and
reproductive traits. Trade-offs between competing func-
tions and traits (i.e., maintenance, reproduction and
growth) are fundamental to life history evolution, parti-
cularly in organisms that are constrained by limited
energy supplies [30]. Because of its multiple effects, tes-
tosterone is an important endocrinological mediator of
various trade-offs, particularly that between reproduc-
tion and survivorship [31,32]. More specifically, it may
balance the competing demands of increased reproduc-
tive success afforded by testosterone-mediated physique,
aggressive behavior, and dominance status with
increased susceptibility to illness.
As Folstad and Karter [33] originally suggested, testos-

terone can stimulate the development and maintenance
of secondary sexual characteristics while also reducing
immunocompetence. Wedekind and Folstad [34] added
that the suppression of the immune system by testoster-
one could allow for energy to be reallocated to the pro-
duction of secondary sexual characteristics, particularly
muscle mass in mammals [29]. The presence of elabo-
rate secondary sexual characteristics, or other character-
istics that honestly reflect health, may therefore
advertise good survivability to potential mates [35].
Many morphological and behavioral characteristics
appear to be honest sexual signals of immunocompe-
tence in avian and other species. Just a few examples
include tail length in peacocks (Pavo cristatus) [36] and
barn swallows (Hirundo rustica) [37], badge size in
house sparrows (Passer domesticus) [38], antler size in
white-tailed deer (Odocoileus virginianus) [39], song
length and complexity in several avian species [40], col-
oration in satin bowerbirds (Ptilorhynchus violaceus)
[41], and antler symmetry in caribou (Rangifer tarandus)
[42]. Phenotypic traits, like coloration, in male nonhu-
man primates may also indicate health status [reviewed
in [43]], although this has yet to be adequately
investigated.
Dominance rank in nonhuman primate males may be

an honest indicator of immunocompetence. If testoster-
one is immunosuppressive, and high dominance rank is
associated with high testosterone levels, then high rank
may also be associated with higher parasite burden.
‘Higher quality’ males may be able to withstand the
immunosuppressive effects of high testosterone levels,
allowing them to invest in secondary sexual characteris-
tics or behaviors dependent on androgens. Those males
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with greater innate disease resistance may be better able
to maintain higher testosterone levels, high ejaculate
quality and other traits associated with successful repro-
duction [44]. Lower quality males may not be able to
tolerate the immunosuppressive effects or increased
energetic costs of high testosterone levels [45-47]. The
antagonist pleiotropic effects of androgens may thus
both limit trait exaggeration and have important influ-
ences on social behavior.
Glucocorticoids are also likely important in mediating

the relationships between agonistic interactions, domi-
nance rank, reproductive function, and immunocompe-
tence. Glucocorticoids like cortisol and corticosterone
are steroids released from the adrenal cortex in response
to disruption of physiological and psychological homeos-
tasis. While this increases circulating glucose levels to
facilitate physical and mental activities and basic stress
responses, prolonged elevation of glucocorticoid levels
can have pathological effects on cognition, growth,
reproduction, immunity and other functions [48]. For
example, cortisol can inhibit inflammation and allergic
reactions, lymphocyte proliferation, antibody and cyto-
kine secretion, and macrophage activity [49-51]. Gluco-
corticoids can inhibit gonadotropin releasing hormone
release from the hypothalamus, downregulate testicular
luteinizing hormone receptors, and decrease testicular
steroidogenesis [52-54].
Because cortisol is released in response to various

stressors, a typical assumption has been that acute and
sustained social stressors associated with low dominance
status would result in chronic elevations in cortisol
levels in low ranking animals. In some species, cortisol
levels are higher in low than high ranking individuals,
whereas in other species the opposite is true [55]. The
relationships between cortisol and dominance rank may
depend on access to social support systems [56].
Furthermore, during times of social instability, high
ranking animals will likely exhibit the highest cortisol
levels, probably due to the need for increased arousal
and vigilance [57].
To improve understanding of the relationships among

dominance rank, testosterone and cortisol levels, and
infection status in nonhuman primates, we collected
fecal samples and behavioral data from an unusually
large community of wild chimpanzees. Our previous
work on this community indicated a significant positive
association between testosterone levels and dominance
rank for adult males (n = 22 animals with 67 total fecal
samples; mixed model analysis controlling for age, p =
0.032) [58]. Other analyses indicated that fecal testoster-
one (p = 0.033) and cortisol (p = 0.020) were positively
associated with parasite richness (the number of unique
intestinal parasite species recovered from hosts’ fecal
samples) in both adult and adolescent males (n = 35

animals with 100 total fecal samples; mixed model ana-
lysis controlling for age) [59]. In the present study, we
add to this research agenda by better describing the
complex relationships between dominance rank, fecal
intestinal parasite infections, and cortisol and testoster-
one levels in the adult male chimpanzees from the
Ngogo population.

Methods
Study site and subjects
Ngogo is in Kibale National Park in western Uganda.
The park is located between 0°41’N, 30°19’E and 0°13’N,
30°32’E, with a total area of approximately 750 km2. The
Ngogo study area is about 25 km2 and contains old
growth, regenerating, and swamp forest, Acanthus scrub,
and other vegetation types [60]. The field site is devoid
of domestic herbivores and pets. Human observation of
the chimpanzees is restricted to researchers and Ugan-
dan field assistants, and latrines and garbage pits are
used for disposal of human waste and refuse at the
research camp. The chimpanzees do not enter camp,
nor do they enter fields outside of the park boundaries,
limiting potential contact of chimpanzees with human
or domestic animal feces.
The Ngogo chimpanzee community (Figure 1) was

originally studied by Ghiglieri in the late 1970’s and
early 1980’s [61]. Research and habituation efforts
resumed at Ngogo in 1991, and have been continuous
since 1995. All adult and adolescent male chimpanzees
are well habituated and are observable within 5-10 m on
the ground. At the time of this study, the Ngogo com-
munity had 24 adult males, 14 adolescent males and a
total of approximately 150 members.
Exact ages of Ngogo community members are

unknown. Adult animals were assigned to the following

Figure 1 Low ranking adult male chimpanzee grooming a high
ranking male at Ngogo.
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age categories, based on physical characteristics (notice-
able teeth wear, thinning of hair, loss of muscle mass)
and on the history of observations: 1 = old, 2 = prime
old, 3 = prime, 4 = young prime, 5 = young. Adolescent
males were classified on a different scale: 1 = closest to
young adulthood (oldest adolescents), 6 = closed to
juvenile stage (youngest adolescents). Age is controlled
for in all statistically analyses because hormones and
dominance rank usually covary with age. However, age
was unassociated with intestinal parasite richness in
these animals [62].
1,700 hours of observational data were collected

between June and December, 2002. Most data on social
behavior came from focal samples of males, but data on
agonistic behavior and on the formation of coalitions by
two or more males were also collected on an ad lib
basis. Data on decided agonistic interactions ("pant-
grunt” vocalizations, submissive responses to aggression,
etc.) were analyzed for the presence of a linear domi-
nance hierarchy among the 22 adult males by calculat-
ing Landau’s linearity index, corrected for ties (h’) in
MatMan (Noldus Information Technology, Leesburg,
VA, USA). For the purposes of categorical data analyses,
adult males were categorized into high, medium, and
low rank groups. Adult males with dominance ranks
between 1 (highest) and 7 were assigned to the high
group. Those ranking between 8 and 15 were assigned
to the medium group, and those ranking from 6 to 22
were assigned to the low group.

Sample collection
67 fecal samples were collected opportunistically from
22 adult male chimpanzees at Ngogo, between July and
September 2002. A mean of 3.32 samples was collected
per individual (range = 1 to 5). Samples from the same
individual were collected on non-consecutive days (spa-
cing between the consecutive samples ranged between 2
and 21 days). Samples were collected immediately fol-
lowing defecation, thus insuring positive matching of
the individual with the sample. Portions of samples that
might have been contaminated by soil or pooled water
were not collected, nor was diarrhea. Blood and mucous
were not observed in any fecal mass collected, nor did
color or consistency differ significantly between masses.
Most samples were collected before 11 AM. Diurnal

effects on parasite output in chimpanzees are unknown.
Diurnal variation in steroid hormone secretion can be a
significant concern, particularly in smaller-bodied pri-
mates such as common marmosets (Callithrix jacchus)
[63] and tufted Capuchins (Cebus apella nigritus) [20].
However, diurnal variation in fecal hormone levels is
probably of less concern in larger-bodied animals, such
as chimpanzees (Pan troglodytes), due to longer gut
retention time [64,65]. Fecal steroids represent long-term

baseline levels with little susceptibility to minor rapid
fluctuations in the hypothalamic-pituitary-gonadal axis.
A portion of each sample was preserved using Para-

Pak plastic transport vials (Meridian Diagnostics, Cin-
cinnati, OH, USA) pre-aliquoted with 10% neutral buf-
fered formalin. A separate portion of each sample was
dehydrated on an aluminum dish for approximately 2
hours at 100°C in a portable Coleman oven placed atop
a kerosene stove. Following desiccation, each sample
was individually packaged with silica gel and shipped
back to the USA using a CDC import permit.

Hormone analyses
For each extraction of testosterone and cortisol, a 0.3
gm sample of feces was homogenized in 4 ml methanol:
acetone (8:2, v/v) and filtered with a 0.2 μm nylon cen-
trifuge filter (Centrex MF; Scheicher & Schuell, Keene,
NH, USA). The filtrate was extracted on Sep-Pak VAC
C18 columns (500 mg) (Water Corp., Milford, MA,
USA). An equal volume of water was added to dilute
the sample, which was then layered onto a column
primed according to manufacturer’s instructions. The
column was washed with 5 ml water, and the steroid
fraction eluted with 3 ml methanol. Extraction recovery,
measured by the addition of I125 labeled steroid to fecal
samples prior to extraction, averaged 65% for testoster-
one and 72% for cortisol.
The testosterone assay used reagents from the Equate

Testosterone RIA kit (Binax, South Portland, ME, USA).
An aliquot of each extract was reconstituted in working
buffer (0.1% gelatin phosphate buffered saline) at a 1:5
dilution. 125I testosterone tracer (50 μl) and 100 μl anti-
serum (diluted 1:2) were added to 100 μl aliquots of
standards (diluted 1:10 to give concentrations of 1-100
ng/dL), samples, and controls (diluted 1:10). After vor-
texing and overnight incubation at room temperature,
500 μl second antibody (PEG goat anti-rabbit antibody
solution diluted 1:2) was added. After 20 min incubation
at room temperature, incubates were centrifuged at
1500 rpm × gm for 60 min at 4°C. The supernatant was
decanted and the radioactivity in the precipitant was
determined by 5 min counts in a gamma counter. Sensi-
tivity was 6 ng/dL. Cross-reactivity was 1.7% for dihy-
drotestosterone and less than 0.1% for all other steroids.
Accuracy was tested by the addition of steroid standards
to a chimpanzee extract. The mean percentage of
observed concentration to expected values in the Equate
testosterone assay was 91.4 ± 5.0% (n = 6).
Internal controls were run in every assay and consisted

of human serum controls (male and female) provided with
the Equate RIA kit along with clinical serum standards
(BioRad, Hercules, CA, USA). Intra-assay variation was
assessed using the mean coefficient of variation of dupli-
cates of male controls (n = 5) and chimpanzee fecal
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extracts (n = 19). The mean intra-assay coefficients of var-
iation for duplicates of male serum control (55.0 ng/dL)
was 2.7%; that for fecal extract duplicates was 4.4%. Inter-
assay variation for serum controls was assessed using the
coefficient of variation of male and female and BioRad
controls from five separate assays. The inter-assay coeffi-
cient of variation of samples was assessed using the mean
of coefficients of variation for three chimpanzee samples
analyzed in two separate assays. Inter-assay coefficients of
variation were 4.2% for the Equate female serum control
(4.8 ng/dL), 4.6% for the Equate male serum control
(55.0 ng/dL), 4.2% and 7.2% for BioRad controls 1 (4.7 ng/
dL) and 2 (58.2 ng/dL), and 10.1% for the three chimpan-
zee samples.
The cortisol assay used reagents from the Diagnostics

Products Corporation Double Antibody 125I cortisol kit
(DPC KCOD, Los Angeles, CA, USA) for serum deter-
minations. Working buffer was distilled water. A tracer-
antiserum solution was prepared by mixing equal parts
of 125I cortisol and cortisol antiserum, and 50 μl added
to 25 μl aliquots of the standards (diluted 1:10 to give
concentrations of 1-50 ng/ml), samples (concentrated
10:1), and controls (diluted 1:10). Each was vortexed
and incubated at 37°C. After 45 min, 250 μl of cold pre-
cipitating solution was added, and the incubates were
vortexed, incubated an additional 5 min at room tem-
perature, and centrifuged at 3000 rpm × gram for 15
min at room temperature. Following decanting of the
supernatant, the radioactivity of the precipitate was
determined by 5 min counts in a gamma counter. Sensi-
tivity of the assay was 2.2 ng/ml. Cross-reactivities were
3.9% for cortisone, 3.6% for 6b-hydroxycortisol, 1.1% for
corticosterone, and less than 1% for all other steroids.
Accuracy, tested by the addition of cortisol standards to
a chimpanzee extract, averaged 96.8 ± 2.6% (n = 5).
Internal controls were run in every cortisol assay and

consisted of clinical serum standards (Bio-Rad 1, 2, 3).
Intra-assay variation was assessed using the mean coeffi-
cient of variation of duplicates of BioRad controls (n = 4)
and chimpanzee fecal extracts (n = 12). Mean intra-assay
coefficient of variation for duplicates of BioRad controls
was 2.2%. Mean intra-assay coefficient of variation for
sample duplicates was 11.6%. Inter-assay variation for
serum controls was assessed using the coefficient of varia-
tion of BioRad controls from five separate assays. Mean
inter-assay coefficient of variation for BioRad serum con-
trol #1 (low) was 11.5%; mean inter-assay coefficient of
variation for BioRad serum control #2 (medium) was 8.7%;
mean inter-assay coefficient of variation for BioRad serum
control #3 (high) was 5.3%.

Parasite analyses
The formalin-fixed samples were examined using the for-
malin-ethyl acetate sedimentation technique [66]. Stool

samples were emulsified and filtered through two layers
of wet gauze into a plastic cup. The stool was washed
with saline solution, placed into a 15 ml conical-bottom
centrifuge tube, and centrifuged at 500 rpm × gram for 3
minutes. The supernatant was discarded, and the sedi-
ment was re-suspended in 10 ml of 10% formalin. 3 ml of
ethyl acetate was added to separate the fat in the sample,
and the suspension was shaken vigorously for 30 seconds.
The specimen was re-centrifuged, the fat/debris plug was
removed with an applicator stick, and the supernatant
discarded. The remaining pellet was re-suspended using
a drop of Lugol’s iodine solution, and the entire pellet
was examined at 10× and 40×.
Intestinal parasite infection status is often measured as

parasite richness (the number of species recovered from
hosts’ fecal samples) or parasite intensity (the number of
eggs/cysts/larva per unit mass of feces). Parasite excre-
tion can vary dramatically within and between indivi-
duals, and parasite egg/cyst/larvae abundance in any
given fecal sample may not directly correlate with the
number of parasites in the chimpanzee host at any given
time. Parasite excretion may not reflect the immune sta-
tus of a host, although disagreement exists on this point
[67]. Parasite richness probably at least reflects the abil-
ity of the host to control infections with multiple para-
sites at any given time. Therefore we used data only on
parasite richness because we consider this a more robust
measure than intensity.

Statistical analyses
Data were entered into an Access database that was
imported into SAS/STAT software (SAS Institute Inc.,
Cary, NC, USA). Mixed modeling (PROC MIXED) was
used to examine relationships between intestinal parasite
richness, dominance rank and hormone levels. Mixed
modeling allowed the use of all data points, including
individuals with missing observations, and avoided the
need for averaging testosterone levels and parasite mea-
sures for individuals and sampling intervals. It also
allowed examination of within-subject effects of contin-
uous variables and control of within-subject covariates
(age). A time-series covariance structure that did not
assume equal spacing of sample intervals was used in
addition to a compound symmetry covariance structure
that assumed correlations remained constant. This is a
reasonable assumption given the short 3-month sam-
pling period and stability of the dominance hierarchy
(see below). A time-series covariance structure accounts
for unequal time periods between sequential samples as
well as differences in the number of samples collected
for each animal. Sampling frequency did not vary con-
sistently with dominance rank (i.e., higher ranking ani-
mals were not sampled more frequently). However,
parasite species richness significantly increased for every
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sequential sample taken (up to four samples) from those
adult, adolescent and juvenile males sampled within the
Ngogo community [62]. The average time between con-
secutive samples collected was 7.74 days.
Partial Spearman correlations (controlling for age)

were used in addition to the mixed models. A negative
correlation coefficient indicates a positive association
because the highest ranking animal was ranked number
one whereas the lowest ranking animal was ranked
number twenty two. Level of significance was always set
at 0.05.

Results
Data on all decided agonistic interactions produced a
highly significant linear dominance hierarchy (h’ = 0.97,
p = 0.0001; 10,000 matrix permutations). No major rank
challenges occurred between male dyads during the per-
iod of sample collection. Most aggression between males
took the form of charging displays. The rate at which
males displayed at others increased significantly with
increasing dominance rank (Spearman rank correlation;
rs = -0.95, df = 21, p < 0.001; by convention, the highest
rank is assigned a value of one). High-ranking males
also engaged in more coalitionary aggression than low
ranking males (rs = -0.81, df = 21, p < 0.001) and
received more grooming than low ranking males (rs =
-0.63, df = 21, p < 0.002).
Among the Ngogo male chimpanzees, twelve taxa of

intestinal parasites (five helminth and seven protozoan)
were recovered, the four most prevalent being Troglody-
tella abrassarti (97.3% of hosts), Oesophagostomum sp.
(81.1%), Strongyloides sp. (83.8%), and Entamoeba chat-
toni (70.3%). The mean numbers of unique helminth
and protozoan species recovered per adult individual
were 2.50 and 1.00, respectively. The intestinal parasite
fauna recovered from all adult and adolescent males is
described in detail elsewhere [62].
Mean testosterone level for adult animals (n = 22 ani-

mals; 67 total samples) was 8.22 ng/gm (range: 2.23-
14.52; S.D.: 3.40). Mean cortisol level for adult animals
was 3.45 ng/gm (range: 0.57-7.57; S.D.: 1.98). Testoster-
one levels were positively and significantly associated
with dominance rank, after adjusting for age (F = 5.51,
df = 1, p = 0.032) [see also [58]]. New analyses here
indicate that cortisol and dominance were not signifi-
cantly associated (F = 0.13, df = 1, p = 0.72).
We have previously shown that, when both testoster-

one and cortisol were placed in a mixed model control-
ling for age (n = 35 adult and adolescent animals; 100
fecal samples total), both testosterone (F = 4.98, df = 1,
p = 0.033) and cortisol (F = 5.94, df = 1, p = 0.020)
were positively associated with total intestinal parasite
richness (both helminths and protozoa) [59]. New ana-
lyses here indicate that dominance rank is significantly

associated with helminth parasite richness (mixed model
controlling for age, F = 5.37, p = 0.034), however the
association between dominance rank and protozoan
parasite richness only approaches significance (mixed
model controlling for age, F = 4.46, p = 0.051). For the
partial Spearman correlations, dominance rank is signifi-
cantly associated with total (helminth and protozoan)
parasite richness (r = -0.44, p = 0.045) and helminth
parasite richness (r = -0.63, p = 0.002), but not proto-
zoan parasite richness (r = -0.16, p = 0.501) (Figure 2).
The use of categorized rank variables confirms these

findings. Whereas the association between dominance
rank category and helminth parasite richness approaches
significance (mixed model controlling for age, F = 3.47, p
= 0.058), there is no statistical association between domi-
nance rank category and protozoan parasite richness
(mixed model controlling for age, F = 1.11, p = 0.355).
For the partial Spearman correlations, dominance rank
category is significantly associated with total (helminth
and protozoan) parasite richness (r = -0.47, p = 0.033)
and helminth parasite richness (r = -0.60, p = 0.004), but
not protozoan parasite richness (r = -0.24, p = 0.303)

Discussion
Adult male chimpanzees at Ngogo exhibited a linear
dominance hierarchy during the study period. Fecal tes-
tosterone levels were significantly associated (directly)
with dominance rank so that higher ranking animals

Figure 2 Dominance rank by helminth and protozoan richness
for each animal. For graphic representation, parasite richness was
summed across samples from each animal, and was subsequently
divided by number of samples obtained from that particular animal.
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had higher testosterone levels. Cortisol was not signifi-
cantly associated with dominance. Several intestinal
parasite species were recovered from the fecal samples,
and both testosterone and cortisol were positively asso-
ciated with intestinal parasite richness (number of
unique helminth and protozoan species recovered).
Dominance was directly associated with helminth para-
site richness. High ranking males had generally higher
testosterone levels and increased helminth, but not pro-
tozoan, burden (richness) compared to lower ranking
animals. To our knowledge, this provides the first ana-
lyses of the relationships among testosterone, cortisol,
infection and dominance status in primates, and one of
the first in wild mammals [see [68] for analysis on fecal
testosterone, dominance and parasite egg counts in male
Alpine ibex (Capra ibex)].

Immunomodulatory actions of testosterone and cortisol
Susceptibility to infection differs among individuals, and
neuroendocrine mechanisms may account for these dif-
ferences. The mammalian immune responses to gastro-
intestinal infection are typified by a combination of
phagocytosis [69,70], activation of the complement cas-
cade and antibody responses to block cellular invasion
[71], and Th-1 and Th-2 cytokine release, which facili-
tates gut inflammation [71-74]. Nematode infections are
typically controlled via the Th-2 response with eosino-
philia, goblet cell hyperplasia, mucin production, and
intestinal mastocytosis [75-79]. Both testosterone and
cortisol may affect these responses.
Testosterone’s immunomodulatory actions appear to

be primarily suppressive, increasing suppressor T cell
populations, reducing T-helper cell function, inhibiting
cytokine and antibody production, and impairing nat-
ural killer cell and macrophage activity [80-90]. By
favoring the development of a CD4+ type-1 phenotype
of peripheral lymphocytes and cytokines [91-93], ele-
vated testosterone levels may increase susceptibility to
infections that are normally cleared via the Th-2
response, like gastrointestinal infections. Not surpris-
ingly, testosterone administration to female soft-furred
rats results in reduced expulsion of the nematode Nip-
postrongylus brasilnesis [94]. Testosterone treatment in
mice is also associated with increased tapeworm egg
production [33] and increased susceptibility of females
to Strongyloides ratti infection [95]. Saino and Moller
[96] also identified a negative association between tes-
tosterone and parasite load in barn swallows (Hirundo
rustica). It may be that testosterone-mediated suppres-
sion of Th-2 anti-inflammatory cytokines diminishes
allergic responses that are needed to clear intestinal
helminth infections. This may explain why those chim-
panzees with higher testosterone level exhibit increased
helminth burden.

Cortisol’s immunomodulatory actions are also primar-
ily inhibitory [[97], and see above]. In addition to chim-
panzees at Ngogo, inverse associations between cortisol
and immune measures have been identified in wild
baboons and red colobus monkeys. In female baboons,
cortisol was inversely associated with total lymphocyte
levels [98]. In male baboons, cortisol was inversely asso-
ciated with insulin-like growth factor I [99]. Chapman
and others [100] have identified a direct association
between fecal cortisol levels and nematode infection in
wild red colobus monkeys (Procolobus rufomitratus
tephrosceles) of Kibale National Park, Uganda. In these
and other cases, elevated or otherwise dysregulated glu-
cocorticoid responses to behavioral or physical stressors
could result in various physical impairments, including
altered lipid profiles and other cardiovascular system
changes [101]. In the present study, cortisol was not sig-
nificantly associated with dominance rank, but was asso-
ciated with intestinal parasite richness.

Dominance and immune functions
Relationships between dominance rank and immune
measures have been identified in several species. In
some, immunocompetence is lower in high status ani-
mals. For example, intestinal infections with the trema-
tode Genitocotyle mediterranea were greater in
dominant male European wrasse (Symphodus ocellatus)
than in smaller, subordinate males [102]. High rank was
associated with lower spleen mass and antibody levels in
response to human IgG in Brandt’s voles (Lasiopodomys
brandtii) [103]. In contrast, high status individuals of
other species frequently exhibit elevated immune
responses relative to their subordinate counterparts.
High ranking male greenfinches (Carduelis chloris) clear
infections from Sindbis virus more quickly than lower
ranking animals [104]. High ranking female dairy goats
had fewer gastrointestinal parasite eggs in their feces
than medium and low ranking individuals [105]. Domi-
nant pigs exhibited higher lymphocyte proliferation to
Aujeszky disease virus and the mitogens concanavalin A
and phytohemagglutinin than subordinate animals
[106,107].
In contrast, dominance status was unrelated to both

testosterone and fecal parasite egg counts in male
Alpine ibex (Capra ibex) [68]. Dominance status was
also unrelated to anti-Seoul virus IgG responses in
inoculated male Norway rats (Rattus norvegicus) [108].
Studies of nonhuman primates also provide mixed

results. In three small, mixed sex, captive groups of
chimpanzees, dominance rank was significantly nega-
tively correlated with immunoglobulin (IgG and IgM)
levels [109]. Dominant male longtailed macques
(Macaca fascicularis) exhibited lower primary antibody
responses to tetanus toxoid [110]. High ranking male
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yellow baboons at Amboseli, Kenya, had greater intest-
inal helminth infections than low ranking males [111].
In contrast, Muller-Graf and others [112] found no
association between helminth infection and dominance
rank in olive baboons (Papio cynocephalus anubis).
Social subordinance is associated with increased louse
prevalence, lower insulin-like growth factor I, and fewer
circulating lymphocytes in olive baboons (Papio anubis)
[99,101,113]. Low ranking female rhesus macaques
(Macaca mulatta) had lower CD4+ and CD8+ lympho-
cyte counts than higher ranking females [114], and low
ranking male longtailed macaques (Macaca fasicularis)
were at greater risk of adenovirus infection than high
ranking animals [115]. The present study suggests that
high ranking adult male chimpanzees have increased
helminth burden compared to low ranking males.
However, just as the relationships between dominance

rank and circulating hormone levels within a species
may depend on many factors, including access to social
support, stability in the dominance hierarchy, and indi-
vidual personality [116-121], so too should the relation-
ships between dominance and immune status depend
on several factors. Because high ranking males typically
have more mating opportunities, they may be at
increased risk of acquiring directly-transmitted infec-
tions [122]. Likelihood of exposure may vary with home
range size, daily travel distance, and variation in social
networks. Increased grooming opportunities can
decrease the risk of arthropod-born diseases. Receiving
grooming, in particular, may protect individuals against
deleterious effects of chronic stress responses [121] and
thereby promote immune status. High ranking males at
Ngogo are attractive grooming partners [123] and the
amount of grooming received was positively associated
with rank during our study period. Increased social sup-
port can lead to decreased cortisol and catecholamine
levels independently of rank [e.g., baboons: [118-120]],
although that high ranking males at Ngogo received
more grooming and more coalitionary support than low
ranking males might help to explain why cortisol levels
were not significantly correlated with rank. Personality
factors, particularly sociability, can mediate disease out-
comes [124,125]. Also, nutritional status is a major
determinant of disease susceptibility and immunocom-
petence [126]. In so far as high rank confers greater
access to nutritional resources, high ranking individuals
should be able to bolster immune responses and with-
stand greater infection loads than subordinates.

Conclusions
Our results are consistent with the supposition that high
ranking male chimpanzees have higher testosterone
levels and increased intestinal helminth burden (rich-
ness) compared to lower ranking animals, and that

neuroendocrine mechanisms may account for rank-
related differences in susceptibility to infection. Elevated
testosterone levels in high ranking male chimpanzees at
Ngogo might have contributed directly to suppressed
immunity, and depressed mucosal immunity might have
translated into increased susceptibility to multiple intest-
inal helminth infections. Elevated androgen levels might
also have contributed to immunosuppression by pro-
moting anabolism and thus decreasing the amount of
energy and nutrients available for immunocompetence
[29,34,127]. Such costs of dominance may constrain
tenure length for alpha males.
The present study provides the first description of the

complex relationships between dominance rank, testos-
terone, cortisol and infection status in nonhuman pri-
mates. Interestingly, protozoan parasite richness was not
associated with dominance rank as expected, although it
was associated with fecal testosterone and cortisol levels.
Our admittedly small sample size of 67 (from 22 adult
animals) prevent us from drawing any definitive conclu-
sions, particularly in reference to potential differences in
relationships between behavioral and endocrine variables
with helminth output compared to protozoan. One
interpretation may be that the helminth parasites (Oeso-
phagostomum, Strongyloides, Physaloptera, Probstmayria,
and Hymenolepis) are more difficult to control and
impose greater immunological costs compared to the
protozoan parasites (Entamoeba coli, Entamoeba hart-
manni, Entamoeba chattoni, Endolimaz, Iodamoeba,
Blastocystis, and Troglodytella abrassarti) recovered
here. Future studies that utilize year-round sampling,
particularly during and after rank reversals or other sig-
nificant social challenges, would function to confirm our
results.
In general, causal relationships among behavioral,

endocrine and health variables remain equivocal. Some
males may attain high ranks because of high testoster-
one levels that facilitate status-seeking behavior, but that
ultimately result in higher parasite loads. Males that are
more disease resistant may also be relatively good com-
petitors and likely to achieve high status. The reverse
could also hold; for example, Taenia crassiceps infection
in male mice decreases the likelihood that a male will
achieve high dominance status [128].
Alternatively, dominant animals may exhibit elevated

testosterone levels, and thus higher helminth parasite
burdens, as a result of gaining high status. Hormones
change the likelihood of expressing a behavior in a cer-
tain social context; simultaneously, behavior affects hor-
mone levels. This two-way relationship is evident in
human males during competition: testosterone levels
increase in anticipation of impending competition, then
continue to rise in winners but may decline in losers
[21,129], although the magnitude of winning and losing
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effects depends partly on whether individuals attribute
the outcome to their own efforts or to external causes
[22]. Similarly, hormones, status competition and immu-
nocompetence may influence one another in chimpan-
zees and other species. Further work on other species,
particularly nonhuman primates, is warranted. Docu-
menting the contribution of infection status to fitness in
this and other populations will prove valuable in both
behavioral ecology and ecological immunology.
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