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Abstract

The advancement of wearable/ambulatory technologies has brought a huge change to data collection frameworks
in recent decades. Mobile health (mHealth) care platforms, which utilize ambulatory devices to collect naturalistic
and often intensively sampled data, produce innovative information of potential clinical relevance. For example,
such data can inform clinical study design, recruitment approach, data analysis, and delivery of both “traditional”
and novel (e.g., mHealth) interventions. We provide a conceptual overview of how data measured continuously or
repeatedly via mobile devices (e.g., smartphone and body sensors) in daily life could be fruitfully used within a
mHealth care system. We highlight the potential benefits of integrating ecological momentary assessment (EMA)
into mHealth platforms for collecting, processing, and modeling data, and delivering and evaluating novel
interventions in everyday life. Although the data obtained from EMA and related approaches may hold great
potential benefits for mHealth care system, there are also implementation challenges; we briefly discuss the
challenges to integrating EMA into mHealth care system.
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Background
In addition to their primary purposes, advances in mo-
bile communication technology offer great potential to
help people become healthier; such technologies can
support a variety of public health goals, such as adopting
and sustaining a wide range of health behaviors [1].
Technology has long held promise for enhancing the
reach of care-services and intervention delivery. For ex-
ample, people from low income, rural, and aging groups
could benefit greatly because technology can facilitate
the provision of health services in cases where there are
geographic or access barriers (e.g., by delivering care re-
motely) or cost barriers (by potentially being able to
offer services at lower costs due to scale, automation, or
other features). Thus, integrating mobile technology into
the health care system could potentially have a major
impact on enhancing outcomes and reducing care

disparities by increasing opportunities for underserved
populations to monitor their self-care and better receive
healthcare services.
Beyond this, an additional potential benefit of using

mobile technology data collection methods is that
such methods can collect and provide relatively “real-
time” information – such data have the potential to
enhance care (e.g., intervention) delivery. For ex-
ample, ecological momentary assessment (EMA) is a
method for acquiring the repeated collection of a per-
son’s momentary experiences in daily life, enabling us
to capture the time course of target variables with re-
lated factors together in its natural environment [2,
3]. Thus, if mobile/remote monitoring using EMA is
available, it becomes possible to deliver care at the
moment and location it is needed. A wide array of
wearable commercial devices currently also enables
useful information related to health status delivering
to be automatically transmitted to the individual/pa-
tient and/or their caregiver (e.g., by linked smart-
phone App, by email, web-portal). In addition, unlike
care provision that requires direct (often face to face)
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access to health care experts, these types of systems
have the potential to be available all the time. This
continuous accessibility could be particularly helpful
for handling diseases that may need daily and some-
times even hourly monitoring and adjusting.
Mobile health (mHealth) is a general term for the use

of mobile devices and other wireless technology in
health care [4]. The broad application of mHealth is to
use mobile devices to improve users’ health and well-be-
ing by surveillance/analysis of their health status,
prevention/treatment support, and chronic disease man-
agement/intervention in natural settings. However, des-
pite these potential benefits, the lack of standardized
procedures (or even well-developed conceptual models)
of how to process, model, and disseminate the data often
impede the effective implementation and/or utilization
of mHealth systems. Thus, integrating EMA into
mHealth care systems means that we use EMA for all
these procedures [i.e., data collection, modeling, and in-
terventions; see also Kubiak & Smyth, in press [5]]. Al-
though attempting to address every issue related to
mHealth design, implementation, and content is of
course well beyond the scope of this article, we attempt
herein to outline some potential benefits of the integra-
tion of EMA with mobile technologies into mHealth
platform and being to address a range of issues in this
field. Specifically, the aims are to 1) present benefits of
using EMA for a mHealth care platform as a flexible and
sustainable infrastructure to advance data collection and
model health-related variables, 2) offer ideas on how
EMA approaches potentially facilitate the realization of
intervention via mHealth care system, and 3) briefly dis-
cuss some of the challenges to implementing EMA data
on the system.

Benefits of using EMA on mHealth care systems
The possible capabilities of mHealth care systems
largely focus around extending “traditional” health
care services from acute care delivery directly from
providers in a care setting to enabling remote and
ongoing data capture and analysis, by creating a net-
work of communication channels, and by helping in-
dividuals keep engaging in their own care in everyday
life [6]. However, the current mHealth care systems
are generally implemented based on information typ-
ically collected by irregular cross-sectional clinical
data (e.g., clinical visit, electronic health record
[EHR]). Also, recent research in mHealth has often
focused on the development of smartphone apps that
connect to wearable devices using passive sensing
technologies (e.g., activity, sleep, or heart rate moni-
toring) [7]. Thus, although informative, this type of
data collection does not comprehensively evaluate in-
dividual’s daily experiences related to health status.

In contrast, EMA approaches can capture more de-
tailed time courses of individual’s psychosocial and sub-
jective experiences and how they relate to other
phenomena (e.g., physiological states), albeit at a cost of
respondent burden. EMA via smartphone applications
can prompt users to report particular behaviors, subject-
ive experiences, and various contextual variables. By
using EMA, we can collect detailed information on con-
textual cognitive and subjective experiences around
many of our everyday life behaviors and decisions. For
example, reducing smoking is a public health care prior-
ity. EMA is helpful to monitor the temporal dynamics of
affect, craving, and other experiences (e.g., who the
smoker typically smokes with); if such processes show
reliable patterns of change (e.g., from just prior to fol-
lowing the smoking behavior) it helps us infer an eco-
logical explanation of the reasons for one’s smoking [8].
Further, these EMA data can be synchronized with other
sources of data including passive sensor data (e.g., of
physiological systems), environmental features (e.g.,
ozone levels), and clinical (e.g., pulmonary function)
data. Aspects of cardiovascular function coupled with
other time-varying psychosocial processes (e.g., affect
and craving) can provide unique information regarding
smoking behavior [9]. Such data can continue to be “lay-
ered” onto; for example, the space-time distribution ob-
tained by global positioning system (GPS) data can
provide information where and when smoking behaviors
occurred [10] and is possible to add to other (e.g., EMA,
sensor data, etc.) data streams. Thus, we see EMA data
collection as one important component to extend and
enhance the quality of health data as well as effectively
monitor and evaluate multi-dimensional health data. It
shows great potential for enhancing a mHealth care sys-
tem because such EMA data may be essential for plan-
ning and management of health care [11].
In addition to the data collection benefits, EMA can pro-

vide significant development in the modeling of health data,
which is thought to be essential to realize the mHealth care
systems. A major issue with modeling health data has been
the lack of high-resolution data on changes in both
predictor and outcome variables in everyday settings [12].
Recent advances in mobile technology have brought
enormous opportunities for improving data collection with
optimal timescale and appropriate granularity. In addition,
EMA allows integrating a broader range of self-reports data
(i.e., psychosocial, cognitive, and subjective experiences)
simultaneously with other health-related variables often
obtained by passive sensing technologies. It thus en-
ables us to comprehensively analyze health-related vari-
ables and draw inferences about health status (both
overall, for the person, as well as for variation over time
within persons). One of the attempts is constructing
dynamic computational models (e.g., Cyber-physical
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systems) which often automatically quantify the multi-
variate health-related variables and identify the associa-
tions (and/or causality) among those variables [12]. For
example, understanding (re) lapse behavior is important
for managing addiction (e.g., smoking). Lapse behavior
does not occur at random, but typically occurs in nat-
uralistic settings and away from a clinic or other
health-care setting. As such, ambulatory methods, such
as EMA, has the potential to capture this in situ data.
Moreover, the rich, often integrative, data streams these
methods produce have the potential to be used in novel
ways – for example, they can be used to predict and
intervene upon behaviors (such as relapse) using dy-
namic computational models [13]. The models based
on such integrated mHealth care systems (e.g., behav-
ioral, physical, social, biological and environmental
monitoring in combination with EMA self-reports) may
thus have a better chance of quantifying relevant behav-
iors and the various influences on naturally occurring
health behaviors. Further, such data-driven and quanti-
tative model-based approaches can lead to interven-
tions/treatments that are personalized, contextualized,
delivered when and where needed in daily life. We turn
to this issue below.

Integrating EMA with interventions via mHealth
care system
The mHealth care system has the potential to provide
individuals with many kinds of support outside of health
facilities at individual level. Mobile and sensor applica-
tions can monitor individuals’ health status and gently
encourage them to engage in healthy behaviors based on
validated dynamic computational models. Conventional
ways to intervene target health behaviors, psychological
states, or diseases often include sparse and regular
schedules across a relatively long-term period (e.g., 3
months) and evaluation of the effects after interventions.
Thus, they do not allow to consider when it is most/
more effective to deliver interventions [14]. Conse-
quently, it may be difficult to prevent undesirable behav-
iors and psychological conditions for health via the
traditional intervention method, especially for the behav-
iors and psychological conditions that transpire in nat-
ural settings, over relatively short time-frames, and are
emergent from the interactions of complex and dynamic
psychological, physiological, behavioral, and/or environ-
mental processes.
However, recent approaches to interventions, which

have been implemented on mHealth care systems, in-
volve multiple time-varying interventions in a short
period (e.g., several times per day) in ecological contexts.
For example, the Just-In-Time Adaptive Intervention
(JITAI) is an intervention method aiming to deliver ap-
propriate support at the right timing/place according to

the contexts that individuals experience at the mo-
ment [15]. Advances in EMA data collection and
modeling have brought opportunities for implement-
ing these JITAI interventions in personalized medicine
on mHealth care systems.
With JITAI type of interventions, the questions of

when and where to implement them are central to ad-
dress and researchers often use predefined decision
rules. For example, in deciding to provide interventions,
for the first step, a health-related behavior (e.g., sleep,
eating behavior, or physical activity) or a psychological
state (e.g., depression and stress level) may be selected
as a target of intervention. And then, as a way to im-
prove/manage the target behavior or psychological state,
intervention can be triggered based on predefined deci-
sion rules. These decision rules can be based on dynamic
computational models derived from EMA data accord-
ing to the target health-related variables [16]. Specific-
ally, we may be able to compute the moment when a
health indicator suggests risk (e.g., undesirable behaviors
and psychological conditions for health) to define an ap-
propriate moment to deliver an intervention [17]; essen-
tially, there is emerging evidence that providing
intervention support at moments of risk provides benefit
beyond standard (e.g. in-person) delivery and simple re-
minder-based systems [18]. The computations can be
enhanced through sophisticated processing and model-
ing by utilizing person-specific estimates (e.g., each indi-
vidual functioning as their own comparison) using
intensive data (e.g., EMA, passively collected), and by
allowing estimates and projections (e.g., calculations of
moments of risk) to update in real time, over time, to
more accurately reflect the intra-individual dynamics of
health processes and health behavior enactment [19].
Such information also holds potential to continuously
improve intervention timing, dose, delivery, etc., by
adapting to individuals’ dynamic experiences – this
might include, but is not limited to, burden (e.g., num-
ber/dose of interventions in some unit time), social en-
vironmental factors, availability for intervention,
location, and so forth.
Beyond the timing of intervention, its contents and

modalities are also important elements to consider.
There are many approaches to constructing intervention
elements to enhance health-related processes. For ex-
ample, we can use active supports via useful information
related to health or mere feedback on individual’s health
status for different situations. Also, these intervention
types can be delivered using various intervention means
such as messages, interactive messages, phone calls, im-
ages, audio, video, and so forth. Further, we see great po-
tential to optimize intervention design and delivery by
careful consideration of the intervention target (i.e.,
which behavior or psychological state is targeted) and
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content (i.e., how and how fast/long/much you
intervene).
“DietAlert” developed by Goldstein and colleagues [13]

is an application that aims to help overweight and obese
individuals avoid dietary lapses after a weight control
diet. Participants are asked to record data about lapses
from their diets and a range of potential triggers using
EMA. Dynamic computational modeling is used to gen-
erate models that estimate the level of upcoming risk for
lapse of eating behavior based on current context. When
an EMA recording from a participant meets predefined
decision rules that indicate a high-risk moment, a series
of brief intervention elements (e.g., brief text message)
are delivered to help prevent lapses. Further, the effect
of any intervention efforts can be immediately evaluated
(e.g., by examining the following EMA, whether a lapse
actually occurred or not, etc.) and the predictive learning
algorithm can be adjusted. Each of these, and other,
intervention processes have the potential to be informed
by EMA data collection with ambulatory technologies as
well as models derived from the data via mHealth care
platforms.

Implementation challenges for mHeath care
systems
Despite the great potential of using EMA data on
mHealth care systems, there are many challenges to the
development, implementation, and utilization of such
systems. These include, but are certainly not limited to,
data quality and valid data sampling rate, model devel-
opment, and model validation in intervention studies.
Despite the proliferation of assessment systems (both in
the marketplace and for research purposes), as well as
for wearable sensor devices (e.g., low cost “fitness
trackers”), there is remarkably little evidence regarding
their reliability and validity. If we wish to integrate such
approaches into clinical care, it is essential to ensure suf-
ficient data quality by validating any new assessment
tool and establishing data capture standards before ap-
plying the tool in mHealth care systems. Many validation
studies have been conducted for wearable devices and
smartphone applications. A review study conducted a
meta-analysis using 60 studies validating energy expend-
iture estimates from activity monitors against criterion
measurements (i.e., indirect calorimetry, room calorime-
ters, and doubly labelled water) [20]. This study showed
that the accuracy of energy expenditure estimates from
40 activity monitors differs depending on activity types
(see Supplementary materials 5 in the study for charac-
teristics of the activity monitors and the measurement
error for each activity monitor). A study examined the
accuracy of smartphone applications and wearable de-
vices against directly observed actual step counts [21].
The validity of heart rate monitors using a wrist-worn or

chest strap for electrocardiography (ECG) detection was
examined by comparing with multi-lead ambulatory
ECG which considered as the gold standard [22, 23].
The feasibility of a remote patient monitoring system
using the knee sleeve and smartphone in total knee
arthroplasty was validated/established in terms of the
continuous (uninterrupted) data collection and patients’
engagement of technology [24].
In addition to the overall accuracy of the tools, it is ne-

cessary to determine which sampling rate is appropriate
for integrating different data (e.g., EMA with clinical and
passive sensor data). Here it is important to be careful
about the burden of high frequencies of self-reported
EMA. For example, understanding how frequently to
monitor specific behaviors (e.g., eating vs. sleeping) will
contribute to the understanding of contextual effects on
the behaviors. For eating, we might readily speculate that
the sampling rate should be greater than once a day to
cover most eating behaviors during a day, whereas for
sleeping that intensity may be less well suited (likely oc-
curring nightly, notwithstanding napping behavior). In-
tensive sampling, however, is extremely burdensome for
participants, for example, if they need to manually input
eating records; this makes it difficult to keep participants
engaged and adherent over lengthy periods. As such, it
is important to empirically evaluate and consider a care-
ful tradeoff between adequate sampling rates and partici-
pant burden for EMA data capture. Passive sensing data
can, in most cases, be continuously measured without
much respondent burden (e.g., infrequent data manage-
ment, battery charging, etc.) but challenges with data in-
tegration (e.g., over what time-frame to aggregate and
merge with EMA) exist. As one example in this area of
enquiry, a study systematically examined the associations
between depressive mood (EMA) and physical activity
(passive sensor) using a variety of aggregation time
frames for physical activity; in brief, their findings sug-
gested that one-hour physical activity epochs are appro-
priate to investigate the association with depressive
mood [25]. Also, a study represented the new research
platform “Physiqual,” which integrates physiological sen-
sor data with EMA such as self-reports data [26]. This
study comprehensively discusses how to gather and
combine wearable sensor technology with EMA, which
may give new insight regarding the question of adequate
sampling rate for integrating multiple data streams.
More research and development may be needed to set
up the analogous sampling rates for other health-related
variables.
Along with assuring the sufficient data quality and valid

sampling rate, sophisticated modeling of the data is an im-
portant element for mHealth care systems. Although
many dynamic computational models are applied to study
the complexity of health status, it is necessary to ensure
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that the proper types of modeling are performed without
bias by validating the models in intervention studies [27].
Here we introduce some literature which provide a useful
information for sophisticated modeling regarding the
management/intervention of health behaviors [28, 29] and
detailed techniques for designing a validation study to test
the effect of mHealth interventions [30, 31]. It is also use-
ful to establish the implications of causality between
health-related variables by combining data-driven ap-
proaches with multiple dynamic computational models es-
timated from multidimensional data (e.g., time courses of
psychological, behavioral, biological, physiological, social,
and environmental variables) obtained by EMA and other
(e.g., passive sensors) data streams [32]. In other words,
the models ideally should go beyond a specific area of
health and integrate models of multiple health processes.
This approach will facilitate our understanding of factors
that may influence health-related variables.
Ultimately, our hope is that these near-continuous

multi-method monitoring systems, including sophisti-
cated EMA data collection, and dynamic modeling ap-
proaches will help developing successful mHealth care
systems that support optimized, efficient, and high-
reach/scalable interventions. However, ensuring safety of
the user (especially patients) and efficacy of the systems,
particularly interventions, are each essential [12]. The ef-
fect of such mHealth interventions should thus be care-
fully considered in a way to validate them to maximize
their safety and efficacy. In addition to “traditional” de-
velopmental pathways and evaluations (e.g., randomized
controlled trials), there are emerging methods for test-
ing, optimizing, and evaluating novel intervention ap-
proaches [33]. It is likely that are careful balance of
these approaches will help this field move forward in a
safe and efficient manner.

Conclusion
Health care experts have advocated the use of mobile
technologies to improve the fragmented health care sys-
tem for decades [1]. One (of many) potential ways to en-
hance this system and improve care is through the
integration of EMA-derived patient reports into broader
mHealth care systems. EMA using mobile data collec-
tion is already an essential research tool in many fields
of research and clinical settings; additionally, wearable
body sensors allow for large quantities of data to be col-
lected automatically, and can be done in conjunction
with EMA reporting. This brings opportunities for inte-
grating such data collection into broader care systems,
but also opens up new data processing methods for
modeling of predictors and outcome variables related to
health and well-being. In addition, the dynamic compu-
tational models constructed by EMA data allow to de-
velop novel interventions (e.g., JITAI) and test its effects,

leading to a successful implementation of mHealth care
systems outside of the traditional points of contact in
care systems (e.g., clinic visits) [34]. Overall, we are opti-
mistic that the models developed with temporally dense,
multidimensional/integrated data can be used to inform
an evidence-based, safe, and effective health-care system
and process that enhances the capacity for people to live
healthier lives.
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