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Possible role of the gut microbiota in the
pathogenesis of anorexia nervosa
Nobuyuki Sudo

Abstract

Anorexia nervosa (AN), an eating disorder, is characterized by extreme weight loss and fear of weight gain.
Psychosocial factors are thought to play important roles in the development and progression of AN; however,
biological factors also presumably contribute to eating disorders. Recent evidence has shown that the gut
microbiota plays an important role in pathogenesis of neuropsychiatric disorders including AN. In this article, we
describe the possible role of the gut microbiota in the development and persistence of AN, based on the latest
research works, including those of our group.
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Introduction
More than 1000 species of microbes are present in the
human gut. They are collectively called the gut micro-
biota and are involved in various host functions [1–3].
Accumulated evidence suggests that gut microbes can
play a role not only in regulating body weight [4] but
also in the development and exacerbation of neuro-
psychiatric diseases [5–9].
Anorexia nervosa (AN) is an eating disorder character-

ized by extreme weight loss and a fear of weight gain
[10, 11]. In general, psychosocial issues are reported to
play important roles in the pathology of AN [12–14];
however, biological factors are also presumed to contrib-
ute to this pathological process [15, 16]. Recently, the
gut microbiota has emerged as an important factor af-
fecting AN pathogenesis.
In the first two sections of this article, we review a his-

torical view that recognizes the commensal microbiota
as an important factor affecting weight control and be-
havioral characteristics. Then, we discuss recent topics
about this theme based on the latest research works,

including those of our group. Unlike comprehensive sys-
tematic reviews and metanalyses [17, 18] that have been
published recently, our aim is to use information from
existing literature to generate testable hypotheses re-
garding the role of the gut microbiota in AN pathogen-
esis. By doing so, we hope to encourage researchers to
conduct cause-effect studies about eating disorders
based on realistic mechanistic hypotheses.

Gut microbes exert a significant impact on body weight
gain
The fact that gut bacteria are involved in weight control
and growth is not a novel finding, but is a long known
basic theory in livestock industries. For example, antibi-
otics have often been used to promote livestock growth
[19, 20], called antibiotic-induced growth promotion
(AIGP). The use of antibiotics for AIGP is still being
exploited in several countries, including the US and
Japan. The precise mechanism for AIGP is unclear, but
the fact that growth promotion is absent when adminis-
tering antibiotics to germ-free animals deficient in bac-
teria [21, 22], indicates that the gut microbiota plays a
critical role in this promoting effect [20]. Gordon et al.
[23–25] used an elegant method of fecal transplantation
to demonstrate that the gut microbiota is critically
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important for regulating body weight. Furthermore, an-
other group [26] showed that transplantation of Chris-
tensenella minuta into mice with an obese phenotype
suppressed weight gain. Thus, these findings indicate
that the gut microbiota can affect body weight regulation
by modulating the gut microbial ecology.

Commensal microbes affect not only host stress response
but also host behaviors
When exposed to stress stimuli, the hypothalamic-
pituitary-adrenal (HPA) axis is activated to maintain
homeostasis of the body [27]. Interestingly, the HPA axis
is known to be affected by both genetic determinants
and postnatal environmental factors during infancy [28,
29]. Because gut microbes are an important environmen-
tal factor, we hypothesized that the gut microbiota plays
a role in host stress responses. In 2004, we first demon-
strated that gut microbes determine the HPA response
to stressors, using germ-free (GF) and gnotobiotic mice
[30]. The degree of plasma ACTH and corticosterone
elevation in response to 1-h restraint stress was higher
in GF mice than in specific pathogen free (SPF) mice.
Furthermore, as summarized in Table 1, mono-
association with B. infantis, a representative inhabitant
of the neonate gut, decreased the HPA stress response
to SPF, while mono-association with Bacteroides vulga-
tus had no effect. The hormonal stress response of
rabbit-derived enteropathogenic Escherichia coli (EPEC)-
monoassociated mice was substantially higher than that
of GF mice, although such an exaggerated response was
not found in mice with an EPEC mutant strain, ΔTir
[31], which was uninternalized due to defects in the
translocated intimin receptor.
The finding that commensal bacteria can substantially

affect the HPA stress response later in life raises an in-
teresting question about whether gut bacteria can
change host behavior. This question has been addressed

in the past decade by several independent groups, in-
cluding our own [32–37]. The commensal microbiota is
a crucial factor in modulating the host’s behavioral pro-
file. For example, we developed a reliable method to ac-
curately analyze the behavior of GF mice maintained in
an isolator [35]. This method enabled us to evaluate GF
animal behavior without the risk of exposure to contam-
ination. Using this system, GF mice were found to be
more active and anxious than EX-GF mice that were
transplanted with a normal SPF microbiota, based on
open-field and marble-burying tests (Table 2).
Colonization with B. infantis decreased the locomotor
activity to the EX-GF level but had little effect on the
anxiety levels. In contrast, mono-association with Clos-
tridium coccoides reduced anxiety levels; however, it did
not affect locomotor activity [35].
Collectively, these results indicate that gut microbiota

can exert a substantial effect on the behavioral pheno-
type as well as the ability of the host to respond to
stressors.

Possible relation between gut microbiota and AN
pathologies
Patients with AN who have extremely low body weight
often show marked resistance to weight gain in response
to calorie intake; therefore, they usually require more
calories to increase body weight than healthy subjects
with normal weight [38–40]. Several factors such as in-
creased physical activity [41] and diet-induced thermo-
genesis [42] are suggested to be involved in this
phenomenon; however, the precise mechanisms for this
are largely unknown. In addition, other important com-
plications of AN include comorbid anxiety and depres-
sive disorders. A well-known study, “the Minnesota
Starvation Experiment” [43], which was performed dur-
ing World War II, clearly showed that starvation signifi-
cantly affected both physical and psychological
conditions [43, 44]. Thirty-six volunteers who refused
military service for religious reasons participated in thisTable 1 Effects of restraint stress (RS) on plasma ACTH and the

corticosterone levels of gnotobiotic mice

ACTH (pg/ml) Corticosterone (ng/ml)

Basal 1 h-RS Basal 1 h-RS

GF 66 ± 12 188 ± 16 19 ± 3.9 131 ± 12

SPF 54 ± 6.1 106 ± 20*** 21 ± 6.5 86 ± 9.9***

B. infantis 60 ± 9.8 113 ± 15*** 21 ± 5.2 79 ± 9.5***

B. vulgatus 63 ± 9.9 166 ± 14 17 ± 6.8 140 ± 14

EPEC 49 ± 15 243 ± 22* 19 ± 6.6 172 ± 20*

ΔTir 60 ± 9.5 153 ± 25 15 ± 3.6 102 ± 17

Plasma ACTH and corticosterone levels were measured before or immediately
after 1 h of RS in germ-free (GF), specific-pathogen-free (SPF), and gnotobiotic
mice reconstituted with a single strain with Bifidobacterium infantis (B. infantis),
Bacteroides vulgatus (B. vulgatus), rabbit-derived enteropathogenic E-coli
(EPEC), or EPEC mutant strain (ΔTir) at 9 wks of age, as described previously
[30]. *** P < 0.001 and * P < 0.05 (significantly different from the GF value)

Table 2 Transplantation of normal gut microbiota renders
germ-free (GF) mice less active and anxious

7 wks of age 10 wks of age 16 wks of age

GF OFT (DT30) 62.7 ± 12.2 63.7 ± 9.4 66.4 ± 21.4

MBT (NBM) 14.3 ± 5.3 15.9 ± 5.9 14.6 ± 6.2

EX-GF OFT (DT30) 46.5 ± 7.1*** 54.0 ± 8.9** 53.5 ± 11.3*

MBT (NBM) 12.5 ± 5.8 12.4 ± 4.5* 9.5 ± 5.5*

Parent GF mice were transplanted with feces of SPF mice, and their offspring
were used as EX-GF mice, as previously described [35]. GF and EX-GF mice at
7, 10 and 16 wks of age were subjected to the open-field test (OPT) and
marble-burying test (MBT). The total distance traveled for 30 min (DT30; meter)
was automatically calculated as spontaneous locomotor activity. The number
of marbles buried for 30min (NBM) was counted as a parameter of anxiety-like
behavior. All data are expressed as mean ± SD. *p < 0.05, **p < 0.01 and ***p <
0.001 (significantly different from the corresponding GF value)
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study. They were psychologically resilient before the ex-
periment; however, most experienced periods of severe
emotional distress during the study. This indicates that
some psychiatric symptoms found in patients with AN
could be explained by the effects of starvation. However,
how and to what extent starvation affects the psycho-
logical and social functioning of patients with AN re-
main largely unknown.
Considering the emerging effects of gut microbes on

body weight control or behavioral phenotypes, we specu-
lated that commensal bacteria may play an important
role in the onset and exacerbation of AN. Undoubtedly,
patients’ premorbid traits and psychosocial stressors are
critical to the onset of AN. Prolonged physiological and
psychological stress, including severe weight loss and ex-
treme dietary habits, may influence the composition of
the gut microbiota and subsequently induce “gut dysbio-
sis.” This disturbed bacterial community may contribute
to a decrease in food efficiency or behavioral abnormal-
ities. For example, hyperactivity, one such abnormal be-
havior, may further strengthen the resistance to weight
gain.

Gut dysbiosis in patients with AN
Several researchers have investigated whether gut dys-
biosis exists in the gut of patients with AN and have
shown that patients with AN show “dysbiosis”, abnormal
features of gut microbiota [45–48]. Armougom et al.
[45] reported that Methanobrevibacter smithii was more
frequently detected in patients with AN than those with
low body weight due to diseases other than AN. Inter-
estingly, these methanogenic archaea are often found in
patients with constipation-predominant irritable bowel
syndrome [49, 50]. Mack et al. [47] found that the ratio
of mucin-degrading bacteria to Clostridium cluster I, XI,
and XVIII in an AN group was higher and the butyric
acid-producing genus Roseburia was lower than that of
the intestinal flora of normal body weight subjects. In
addition, the proportion of Bacteroidetes phylum in pa-
tients with AN was significantly reduced compared to
normal-weight subjects and did not recover after weight
gain. Our group [48] used the intestinal bacterial analysis
system YIF-SCAN® that was developed by Yakult Central
Laboratory to examine the intestinal bacteria of female
subjects with AN and age-matched healthy women. The
total bacterial, Clostridium coccoides, Clostridium lep-
tum, Bacteroides fragilis, and Streptococcus counts were
significantly lower in the AN group than the control
group. The detection rate of the Lactobacillus plan-
tarum subgroup was significantly lower in the AN group
than in the control group. Based on 16S rRNA sequen-
cing methods, we also reported a lower relative abun-
dance of the phylum Bacteroidetes in patients with AN
than healthy age-matched controls [51]. As summarized

in Table 3, several recently published papers [52–57]
have also shown changes in gut microbial ecology at the
phylum or genus levels; however, no specific bacteria
were identified among these reports. Thus, although the
results differ depending on the patient’s background or
analytical methods, “gut dysbiosis” is consistently ob-
served in patients with AN.

Can gut dysbiosis contribute to AN pathologies: analyses
using gnotobiotic animal models
The existence of gut dysbiosis does not always relate to
impaired functional outcomes; namely, such disturbed
microbiota may not be a causal factor contributing to
AN pathologies but an epiphenomenon resulting from
lengthy starvation. To test this, we transplanted the gut
microbiota of patients with AN into GF mice to establish
gnotobiotic mice (gAN) whose microbiota consisted of
the intestinal microbiota of patients with AN [51]. The
gAN mice showed a significantly decreased weight gain
compared with the gnotobiotic mice (gHC) transplanted
with the gut microbiota of healthy women. Similarly,
food efficiency (weight gain/food intake) was also lower
in the gAN mice than in the gHC mice. Moreover, the
gAN mice also exhibited increased anxiety-like behaviors
relative to the gHC mice, when evaluated by open field
and marble-burying tests. Interestingly, marble-burying
behaviors displayed the highest correlation with the rela-
tive abundance of the genus Bacteroides. Moreover, the
administration of Bacteroides vulgatus, which belongs to
the genus Bacteroides and is a predominant species of
the Bacteroides fragilis group in adult humans [58], re-
versed the behavioral abnormalities in the gAN mice.
These results indicate that some characteristic features

of patients with AN can be reproduced by transplanting
the AN gut microbiota. Bacteria, such as Bacteroides
vulgatus, may play a protective role against the develop-
ment of pathologies specific to patients with AN. Re-
cently, Glenny et al. [59] reported that fecal
transplantation from patients with AN exerted no sig-
nificant effects on body weight in GF mice. A precise
reason for this discrepant result is unclear; however, this
may be related to the methodology of fecal transplant-
ation, which involved the use of frozen feces, as they
suggested. Therefore, the results of our study, which uti-
lized fresh feces, should be validated by future experi-
ments using a larger number of mouse colonies and
different human donors.

Molecules potentially involved in AN pathology: analyses
using serum metabolome profiles
The above results based on animal experiments provide
valuable information about some pathological features of
AN; nonetheless, they are inapplicable to human
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conditions. Therefore, we performed metabolome ana-
lyses using human materials.

Uremic toxins and related compounds
We detected 275 metabolites in serum samples from
patients with AN and healthy controls [60]. Although
the patients with AN enrolled in this study failed to
show any apparent renal dysfunction, the serum levels
of guanidinosuccinic acid and N2-phenylacetylgluta-
mine, a uremic toxin, were significantly higher in the
patients with AN restricting type (ANR). Therefore,
precise quantification of uremic toxins was performed
using selected-reaction monitoring of liquid chroma-
tography/electrospray ionization-mass spectrometry/
mass spectrometry at Kureha Corporation, as reported
[61–63]. The serum p-cresol (PCS), indole-3-acetic
acid, and phenyl sulfate levels were significantly
higher in an AN group than in an age-matched con-
trol group [60]. Because these uremic toxins are pro-
duced by gut microbes, gut microbes may contribute
to increased uremic toxins. This possibility was sup-
ported by our results showing that serum PCS levels
in an ANR group (but not a control group) correlated
positively with the abundance of a Clostridium coc-
coides group or a Clostridium leptum subgroup [60].

Interestingly, in another cohort of ANR patients [51],
the relative abundance of members of the genus
Blautia was significantly higher in ANR patients than
in age-matched healthy women. Previously, it was re-
ported that the genus Blautia was the most abundant
subgroup in human intestinal Clostridium coccoides
group populations that were identified using the YIF-
SCAN system [64]. These findings suggest that in-
creased populations of certain bacteria belonging to
the genus Blautia may help elevate the serum uremic
toxin levels of patients with ANR.
Yokoyama et al. [65] reported that PCS derived

from gut microbes may slow the growth of weanling
pigs and that inhibiting PCS production with antibi-
otics may be one of the mechanisms by which antibi-
otics can induce AIGP [20]. The compound was also
found to play a role in the development and progres-
sion of neuropsychiatric diseases, such as autism [66–
68]. For example, Hsaio et al. [69] suggested that 4-
ethylphenylsulfate, a sulfated compound of PCS, may
promote the development of autistic-like behavior in
a mouse model with maternal immune activation.
Nonetheless, whether PCS or its related compounds
can affect weight gain and behavioral characteristics
of patients with AN remains unclear.

Table 3 Gut microbial composition of patients with anorexia nervosa (AN)

Characteristics of AN participants Methods Main findings 1Country 2Year 3Ref

AN (n = 9, age 19–36 years, 4BMI 12.73 ± 1.6) 5PCR Methanobrevibacter smithii concentration was higher in AN
patients than in lean control.

France 2009 [45]

AN (n = 14, age 27.3 ± 10.8, BMI median
13.5)

PCR Firmicutes, Bacteridetes, Methanobrevibacter smithii, and E. coli were
found in 98.5, 67, 64 and 51% of the participants, respectively.

France 2013 [52]

AN (n = 16, Age 28 ± 11.7 years, BMI 16.2 ±
1.5)

616S rseq Alpha diversity was lower in AN patients than in healthy controls.
At genus level, Anaerostipes and Faecalibacterium were reduced
versus a healthy comparison group.

USA 2015 [46]

7ANR (n = 14, Age 28.1 ± 10.7 years, BMI
12.7 ± 1.5), 8ANBP (n = 11, Age 32.5 ± 9.4
years, BMI 13 ± 1.2)

PCR Amounts of Clostridium coccoides group, Clostridium leptum
subgroup, Bacteroides fragilis and Streptococcus were lower in AN
patients than in healthy controls.

Japan 2015 [48]

AN (n = 55, Age 23.8 ± 6.8 years, BMI 15.3 ±
1.4)

16S rseq The ratio of mucin-degrading bacteria to Clostridium cluster I, XI,
and XVIII was increased, while the butyric acid-producing genus
Roseburia was decreased, relative to controls.

Germany 2016 [47]

AN (n = 15, BMI 13.9 ± 2.1) 16S rseq Enterobacteriaceae and Methanobrevibacter smithii levels were
increased compared with healthy controls; while, the genera
Roseburia, Ruminococcus and Clostridium, were depleted.

Italy 2017 [53]

AN (n = 18, Age 22.4 ± 3.2 years, BMI 15.3 ±
1.3)

16S rseq Only Coriobacteriaceaeone levels were significantly enriched in AN
compared to other groups.

Austria 2017 [54]

AN (n = 17, Age 21.8 ± 3.6 years, BMI 15.2 ±
1.3)

16S rseq Ruminococcaceae and Faecalibacterium were increased in a low-
zonulin population. No specific comments about AN.

Austria 2018 [55]

AN (n = 33, Age: 32 ± 12, BMI 11.7 ± 1.5) 16S rseq Klebsiella and Salmonella levels were more abundant in AN
patients whereas Eubacterium and Roseburia were significantly less
abundant in patients than controls.

France 2019 [56]

ANR (n = 10, Age 25 ± 2.8 years, BMI 13.3 ±
0.3)

16S rseq A lower relative abundance of phylum Bacteroidetes was
observed in AN in comparison to age-matched healthy women.

Japan 2019 [51]

1Country, where each study was conducted; 2year, when each study was reported; 3ref, references number; 4BMI, body-mass index; 5PCR, polymerase chain
reaction using targeted-bacteria specific primers; 616S rseq, 16S rRNA sequencing analysis; 7ANR, AN restricting-type; 8ANBP, AN binge-purging type
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Amino acids: tryptophan and related molecules may be key
players responsible for AN-specific pathologies
Serum metabolomic measurement showed another in-
teresting finding regarding AN. Serum levels of 10
amino acids, including asparagine, tyrosine, isoleucine,
alanine, histidine, leucine, methionine, proline, trypto-
phan (TRP), and valine, were lower in patients with AN
than age-matched healthy women, when the false-
discovery rate corrected p-value was set at less than 0.1.
According to pathway enrichment analyses, the pathway
of “phenylalanine, tyrosine, and TRP biosynthesis” was
ranked as the highest impact score [60].
Since Kaye’s pioneering works [70, 71], TRP has been

demonstrated to play an important role in the develop-
ment and maintenance of AN. In fact, in malnourished
and emaciated individuals with AN, reduced plasma TRP
availability [72–74] and reduced 5-hydroxyindoleacetic
acid levels in the CSF have been reported [71]. This de-
creased serotonergic system may be involved in AN path-
ology by changing the host behavior. Indeed, increased
locomotor activity, hyperactivity, is often seen in subjects
with AN and has been regarded as a key characteristic of
the disorder [75–77]. Interestingly, Uchida et al. [78] re-
ported that mice fed TRP-limited diets exhibited increased

locomotor activity. This indicates that a dearth of trypto-
phan due to decreased dietary intake can exacerbate AN-
specific behavioral abnormalities, such as hyperactivity, via
modulating the brain 5-HT system, subsequently aggra-
vating poor weight gain by increasing exercise-induced
calorie consumption. This series of events eventually
forms a vicious cycle, which may substantially contribute
to the perpetuation of AN pathology.

Future perspectives
Increasing attention has been paid to the role of gut
microbiota in AN. However, in terms of gut microbes,
the following questions remain to be addressed.

1) There is a pressing need to develop more effective
therapeutics for adult patients with AN who are
refractory to usual treatments. Probiotics may be a
useful adjunctive therapy to achieve better weight gain
and maintain appropriate mental conditions. This is
clinically important and should be addressed by
randomized controlled studies with large sample sizes.

2) Some gut bacteria metabolize indigestible dietary
fiber or oligosaccharides and produce short chain
fatty acids (SCFAs), such as acetate, propionate, and

Fig. 1 Possible role of the gut microbiota in the pathogenesis of anorexia nervosa (AN). Premorbid traits, such as compulsive personality,
perfectionism, and drive for thinness, and psychosocial stressors play a crucial role in AN development [74]. Consequently, changes in dietary
habits and altered intake of food ingredients, induced by dieting, lead to a dearth of essential amino acids [60] and “gut dysbiosis” [45–48, 51–
56]. Physical and psychological stresses accompanying extreme weight loss may also affect the disturbed microbial ecology of the gut [89, 90].
Moreover, gut dysbiosis, together with the stresses, also induces constipation by impairing gut motility function [49, 50]. Prolonged constipation
with gut dysbiosis elevates uremic toxins [60], such as p-cresol, which is possibly involved in poor weight gain [65] and psychiatric symptoms
[69]. Decreased short chain fatty acids (SCFA), especially acetate, derived from gut dysbiosis [48] may also contribute to impaired weight control
[79] and persistent anxiety [81, 82]. Finally, hyperactivity, a key characteristic of AN [75–77], is potentially induced by an insufficient intake of
essential amino acids, such as tryptophan, and further perpetuates low body weight via increasing calorie expenditure
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butylate [79]. SCFAs are now considered to be one
of the key molecules that can affect
neuropsychiatric functions [5, 80]. Such bacteria-
generated SCFAs exert an anxiolytic effect in mice
[81, 82]; therefore, pre- or pro-biotic interventions
that have an ability to increase fecal SCFAs may be
a therapeutic option to improve mental conditions
in patients with AN.

3) The majority of gut bacteria resides in the colon;
therefore, the colonic bacteria have been extensively
studied. However, how and to what extent
microbes residing in the jejunum or ileum can
contribute to host pathophysiology are largely
unknown and should be clarified. For example,
small intestinal bacterial overgrowth has been found
to occur under some pathological conditions [83],
and because amino acids, including tryptophan, are
usually absorbed via transporters present in the
upper GI tract [84, 85], it is theoretically possible
that bacteria in the small intestine may play a role
in the development and exacerbation of AN
pathology by modulating the ability of the microbes
to metabolize diet- or host-derived proteins. These
bacteria may confer protection against AN-specific
behavioral abnormalities by producing amino acids
such as tryptophan.

4) Recently, some species of gut microbes have been
reported to synthesize d-amino acids as well as l-
amino acids [86, 87]. D-serine is known to activate
the N-methyl-D-aspartic acid receptor as its co-
agonist [88]. Therefore, D-amino acids, such as d-
tryptophan in the gut lumen, may exert a substan-
tial effect on brain function similar to D-serine.

Figure 1 shows our working hypothesis concerning the
possible role of the gut microbiota in the development
and perpetuation of AN.

Conclusion
The theory of “autointoxication,” which states that
toxins generated in the gut exert a negative impact on
brain function, inducing depression, anxiety, and other
mental diseases [91–93], was long regarded as an ir-
rational concept. Only recently has scientific research
been conducted on the topic, and it has become exten-
sively studied. Further developments in this field could
elucidate the role of gut microbes in the pathogenesis of
eating disorders and further provide a strong rationale
for probiotic intervention as a treatment for patients
with AN.
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